Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Анализ рынка сывороточного протеина в России
  • Исследование рынка кормовых отходов кукурузы в России
  • Исследование рынка крахмала из восковидной кукурузы в России
  • Исследование рынка восковидной кукурузы в России
  • Анализ рынка сорбиновой кислоты в России
  • Исследование рынка силиконовых герметиков в России
  • Исследование рынка синтетических каучуков в России
  • Анализ рынка силиконовых ЛКМ в России
  • Исследование рынка рынка силиконовых эмульсий в России
  • Анализ рынка цитрата кальция в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    ТЕМАТИЧЕСКИЕ НОМЕРА

    ИНДУСТРИЯ «ИСКОЖ»

    Искусственные кожи, клеенки
    ->

    Уважаемые читатели, приветствуем Вас тематическом разделе «ИСКОЖ»! Искусственные кожи - это широкий круг композиционных полимерных материалов, применяемых для изготовления обширного ассортимента изделий (обувь, одежда, галантерея, изделия технического назначения и др.) Задача этой индустрии – восполнить дефицит натурального сырья, прежде всего натуральной кожи, и предоставить относительно дешевые материалы для различных областей применения. Зачастую они обладают уникальными и специфическими свойствами… О тенденциях развития индустрии, проблемах, инновациях, новостях компаний читайте в этом разделе.

    Список сообщений |

    21.07.2010

    ОПИСАНИЕ ТЕХНОЛОГИИ КАЛАНДРИРОВАНИЯ

    Каландры были первоначально разработаны для переработки резины, а в настоящее время широко используются для переработки термопластов, в основном мягкого ПВХ. Каландрование заключается в заливке пластичной массы в щель между двумя валками, где она формуется в пленку, которая затем проходит через остальные валки.

    Материал выходит в виде непрерывной пленки, толщину которой определяет зазор между последней парой валков. Поверхность пленки зависит от поверхности последнего валка и может быть блестящей, матовой или структурированной. После выхода из каландра лист охлаждается на охлаждающих валках и проходит через 3-радио-активный толщиномер до подачи на намотку.

    Пластичная смесь, подаваемая в каландр, может быть просто расплавом полимера (например, ПЭ); в случае ПВХ проводят большие подготовительные работы по составлению композиции, смешению, желатинизации, фильтрации. Кроме полимера вводят инертные минеральные наполнители (для снижения стоимости и модификации физических свойств), пигменты, технологические смазки, стабилизаторы и пластификаторы. Сухие компоненты, кроме пигментов, загружают в ленточный смеситель и интенсивно перемешивают для получения равномерной дисперсии. Если нужно вводить пластификаторы, их впрыскивают в порошковую смесь на начальной стадии смешения.

    При получении дисперсной смеси требуемого качества смесь выгружают через клапан в днище смесительной камеры и взвешивают в порционной емкости. Если требуются пигменты, их вводят на этой стадии в каждую емкость отдельно. Эти емкости затем разгружают в первичный смеситель и перемешивают при 120-160 °С. Сочетание нагрева и смешения (смеситель типа «ко-кнетер») вызывает частичную желатинизацию смеси. Частично желатинизированный материал подают в двухвалковую мельницу, где он образует лист вокруг переднего вала. Его можно подавать непосредственно в каландр, но для пленок и тонких листов дополнительно вводят стренинг-процесс для удаления любых грубых частиц.

    Типичный стренер состоит из одношнекового экструдера с фильтром непосредственно после шнека. Фильтр состоит из тонких сеток, изготовленных из нержавеющей стали, механически опирающихся на более редкую грубую сетку и решетник. Каландр может содержать от двух до пяти полых валков, снабженных паровым обогревом или водяным охлаждением, и характеризуется числом валков и их расположением, например I, Z, Г (наиболее типичное – Z или Г).

    К валкам необходимо подводить очень большие усилия для формования полимера в тонкую пленку, что вызывает изгиб валков и получение листа, который толще в середине, чем по краям. Некоторые способы борьбы с этим эффектом: 1) валки могут быть бомбированы, т. е. их диаметр в центре больше, чем по краям; 2) валки могут быть слегка перекрещены, что увеличивает зазор по краям валков; 3) изгибающий момент может быть приложен к концам каждого валка установкой вторых подшипников на каждую щеку вала и их нагружением гидравлическими цилиндрами. Каландры типа Z имеют в этом отношении преимущества, потому что прогиб валка не влияет на щель, и, таким образом, разнотолщинность уменьшается. Это происходит потому, что противолежащие валки расположены под прямым углом, а не в линию.

    Как уже упоминалось, толщину пленки или листа на выходе из каландра измеряют толщиномером. Он позволяет определить среднюю толщину по площади листа. Излучение от изотопа типа Таллий-204 проходит сквозь лист и собирается в ионизационной камере. Излучение, достигшее камеры, обратно пропорционально массе единицы площади измеряемого материала.

    Каландры очень массивны из-за больших усилий, необходимых для продавливания пластической массы в тонкую щель. Они требуют высокой температуры с небольшим допуском по валу и высоких давлений, также с низким допуском. Требуется большая площадь пола из-за сопутствующих устройств типа миксеров, смесителей, систем контроля температуры, загрузки - выгрузки и т. д. Каландрование, поэтому капиталоемкий процесс, каландры стремятся создавать для широкоформатных пленок, не менее 1,8 м, так как цена их в этом случае пропорционально меньше.

    Однако такие большие машины применяют только для пластифицированного ПВХ, потому что вязкость непластифицированного ПВХ значительно больше, что затрудняет работу на валках большой ширины. Для производства непластифицированных ПВХ пленок был разработан специальный процесс Лювитерм. ПВХ быстро нагревают до 220°С в контакте со специально сконструированными алюминиевыми валками и получаемую горячую пленку обычным образом сразу же ориентируют в высокотемпературной зоне.

    Каландры уже, чем описанные выше большие машины, их производительность меньше. Используют специальные марки ПВХ (со специальной стабилизацией), а стадию компаундирования обычно проводят на экструдере, непосредственно запитывающем каландр. Каландрованные пленки обычно более однородны по сравнению с экструзионными. Это связано с многими причинами, одна из которых - продуманность конструкции каландров. Конечная толщина пленки очень сильно зависит от щели между последней парой валков, в то время как в процессе экструзии толщина зависит больше от коэффициента вытяжки в случае рукавной пленки или скорости приема в случае поливной пленки. Кроме того, в поперечном сечении экструзионной головки могут быть участки, где течение предпочтительно, что приводит к разнотолщинности.

    В рукавном процессе имеются дополнительные усложняющие факторы, такие как конструкция, на которую опирается дорн головки. Они также влияют на течение расплава, приводя к разнотолщинности. Дополнительным преимуществом каландрования является лучшее смешение. Количество энергии, доступное в каландровой линии, много больше, чем в экструзионной. Поэтому каландрованная пленка менее зависима от однородности сырья. Главное преимущество экструзии ПВХ - намного меньшие капитальные затраты, что дает более быструю экономическую отдачу.

    Основным оборудованием каландровой технологии является, естественно, каландр, то есть машина, состоящая из массивного корпуса, в котором вращаются валки – главный рабочий элемент. Валки приводятся в движение индивидуальным приводом или групповым, если они получают вращение от одного, общего, электродвигателя. Вращение передается на валки через универсальный редуктор и шарнирные муфты, допускающие смещение валков (регулировка зазоров, перекос). Станина каландров – сложное техническое устройство, которое должно обеспечивать предельную жесткость конструкции, отсутствие вибрации, минимум тепловых деформаций, размещение и успешное функционирование всех вспомогательных механизмов (регулировки зазоров, перекоса валков, теплорегулирования, загрузки, отвода готового изделия и пр.).

    Стоимость станины составляет до 50% общей стоимости машины. Особые требования предъявляются к рабочим валкам – максимальная прочность и жесткость, обеспечивающие минимальный прогиб, вызываемый действием распорного усилия, отсутствие эксцентриситета бочки (наружной, рабочей поверхности валка) относительно ее оси вращения; термохимическая стойкость бочки и сохранение ею исходного класса чистоты поверхности (хромирование, полировка и др.), минимальная инерционность при терморегулировании.

    В настоящее время чаще других используется теплорегулирование жидким теплоносителем (вода, острый пар, динил), которое позволяет активно влиять как на нагрев валка, так и на его охлаждение. В этом случае последнее требование реализуется максимальным приближением каналов с теплоносителем к рабочей поверхности (бочке) валка. Основные технические характеристики каландров включают число валков, их диаметр и длину и предельное распорное усилие, которое могут выдержать подшипниковые узлы валков.

    Схема каландровой установки

    Компоненты сырья, включая смолы, пластификаторы, стабилизаторы, красители и т.д., смешиваются, образуя расплав. Этот расплав подается в каландровую машину, состоящую из систем движущихся валков – каландров (на схеме – питатель). При производстве могут использоваться различные конфигурации оборудования. На схеме 1 показана типичная каландровая линия в форме «опрокинутой L».

    1 | 2

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    ТЕМАТИЧЕСКИЕ НОМЕРА

    Полимеры для автопрома

    Индустрия «автопластиков»

    Пластики в медицине

    Полимеры на службе здоровья

    Полимерные трубы

    Борьба за коммуникации

    Полиуретаны

    Класс высоких свойств

    Полимеры в электронике

    «Электропластики» и прогресс

    Индустрия полиэфиров

    Царство полиэфиров

    Стеклопластики

    Легкие и прочные

    Экструзия профилей

    «Профильные» технологии

    Пресс-формы

    Оснастка: технологии и сервис

    Нетканые материалы

    Мир нетканых материалов

    Термопластавтоматы

    Оборудование для литья под давлением

    Полиолефины

    Базовый пласт

    Экструзия пленок

    Слои прогресса

    Конструкционные пластики

    Детали конструктора

    НАНОТЕХНОЛОГИИ

    Под знаком НАНО

    КабельПРОМ

    Применение и переработка полимеров

    Эластичные технологии

    Каучуки и резины

    Древесно-полимерные композиты

    «Жидкое дерево»

    Индустрия «ИСКОЖ»

    Искусственные кожи, клеенки

    Адгезивы

    Революция в технологиях сборки

    Все номера
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved