Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Анализ и прогноз рынка микробарита в России
  • Анализ и прогноз рынка синтетических моющих средств в России
  • Анализ и прогноз рынка средств дезинфекции поверхностей в России
  • Анализ и прогноз рынка антисептиков в России
  • Анализ и прогноз рынка средств дезинфекции в России
  • Анализ и прогноз рынка углеводородных пропеллентов в России
  • Анализ и прогноз рынка хладонов в России
  • Анализ рынка спальных мешков в России
  • Анализ рынка туристических рюкзаков в России
  • Анализ рынка туристических палаток в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    Технологии

    НОВЫЙ КОМПОЗИТ: прозрачность стекла, твердость стали


    Исследователи из Мичиганского Университета создали пластмассовый композит, твердый как сталь, но легкий и прозрачный, за счет копирования молекулярной структуры морских ракушек, созданной по принципу кирпича и цементного раствора. Композит состоит из нанолистов глины и растворимого в воде полимера.


     

    Профессор в области инжиниринга Николас Котов едва не назвал материал «пластмассовой сталью», но новый материала оказался недостаточно эластичным, чтобы заслуживать такого названия.
    Тем не менее, по его мнению, дальнейшая работа над этим материалом может дать более легкую и прочную броню для солдат и полиции и их транспортных средств. Материал можно также использовать при производстве микроэлектромеханических устройств, микроструйных устройств, биомедицинских датчиков и клапанов, а также беспилотных летательных аппаратов.
    Вместе с другими сотрудниками Мичиганского Университета Котов является автором статьи об этом композитном материале «Сверхпрочные полимерные нанокомпозиты с жесткими слоями», которая была опубликована в журнале Science.
    Ученым удалось решить проблему, которая на протяжении десятилетий ставила ученых в тупик: отдельные наноразмерные строительные блоки, такие как: нанотрубки, нанолисты и наностержни, являются сверхпрочными. А вот материалы с более крупной размерностью, которые созданы из связанных между собой наноразмерных строительных блоков, являются относительно слабыми, точнее были слабыми до сих пор.
    «Всякий раз, когда ученые пытались создать, что-либо осязаемое, что можно держать в руках, возникали проблемы с передачей твердости отдельных нанолистов или нанотрубок всему материалу», – рассказывает Котов. – «Мы показали, что можно добиться практически идеального переноса нагрузки с нанолистов на полимерную матрицу».
    Ученые создали этот новый композитный пластмассовый материал с помощью ими же разработанной установки, которая способна создавать материалы слой за слоем в наноразмерном масштабе.
    Робототехническая установка состоит из манипулятора, который находится в ожидании у колеса с емкостями, содержащими различные жидкости. В данном случае рука манипулятора держала кусок стекла размером с пластинку жвачки, на котором и строился этот новый материал. Рука обмакивала стекло в клееподобный полимерный раствор, а затем в жидкость, которая представляла собой дисперсию нанолистов глины. После того, как эти слои высыхали, процесс повторялся. Для того чтобы создать фрагмент этого материала, толщиной с кусок пластмассовой обертки, понадобилось 300 слоев из клееподобных полимеров и нанолистов глины. 
    Подобным же образом, слой за слоем, создается перламутр, переливчатая внутренняя оболочка раковин устриц и мидий. Это один из самых твердых природных неорганических материалов.

    Клееподобный полимер, который использовался при проведении экспериментов, это поливиниловый спирт – такой же важный компонент, как и сам процесс сборки слоя за слоем. Структуры «наноклея» и глинистых листов позволяют слоям образовывать между собой водородные связи, создавая то, что Котов называет «эффектом липучки». Такие связи, если они будут нарушены, могут легко формироваться вновь на новом месте.
    Эффект липучки является одной из причин прочности материала. Другой причиной является расположение нанолистов. Они располагаются подобно кирпичам в перемежающемся порядке.
    «Когда Вы имеете дело со структурой из кирпича и цементирующего состава, любые трещины заделываются каждой из связей», - объясняет Котов. – «Трудно воссоздать наноразмерные строительные блоки в крупном масштабе, но мы этого добились».
    В коллектив сотрудников вошли: профессор инженерной механики Эллен Арруда, профессор по аэрокосмической технике Энтони Ваас, профессор в области химии, инжиниринга материаловедения и биомедицины Йорг Лэан, а также профессор химии Аялусами Рамамурти. Котов является профессором химической технологии, материаловедения и инжиниринга, а также биомедицинского инжиниринга.
    Наномеханическое поведение этих материалов моделируется группой профессора Арруда; Ваас и его группа работали над наномеханическим поведением и применениями в авиации.
    Колледж Инжиниринга Университета Мичигана считается одной из лучших инженерных школ США. Он может похвастаться одним из самых больших бюджетов исследовательских работ среди государственных университетов, который составляет более 130 миллионов долларов.
    В Мичиганском Колледже Инжиниринга 11 отделений, а также Центр технических исследований Национального научного фонда. Основное внимание в этих одиннадцати отделениях и центре уделяется исследованиям в трех развивающихся областях: нанотехнологии и интегрированные микросистемы, клеточная и молекулярная биотехнология, а также в области информационных технологий. Мичиганский Колледж Инжиниринга стремится собрать 110 миллионов долларов на проекты в этих областях, для того чтобы стимулировать дальнейшие открытия. Задачей Колледжа является развитие академического знания и продвижение на рынок самых современных исследований для того, чтобы способствовать здоровью и благосостоянию людей.

    Nanotechnology Today

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    Материалы раздела
  • НОВАЯ ТЕХНОЛОГИЯ СИНТЕЗА ПОЛИУРЕТАНА НА КЗСК
  • РОССИЙСКИЕ САПФИРЫ В ДИСПЛЕЯХ APPLE
  • АВТОНОМНЫЙ УЗЕЛ ВПРЫСКА ДЛЯ МНОГОЦВЕТНЫХ ДЕТАЛЕЙ
  • ПОЛИАМИДЫ ULTRAMID ДЛЯ ФОТОЭЛЕКТРИЧЕСКИХ СИСТЕМ
  • ВПЕРЕДИ ПЕРЕХОД К ПОДЗЕМНЫМ КАБЕЛЬНЫМ СИСТЕМАМ
  • РЕЗИНОВЫЕ ПОКРЫТИЯ BASF COATINGS в АВТОПРОМЕ
  • СТЕКЛОСОТОПЛАСТЫ на ОСНОВЕ КВАРЦЕВОЙ ТКАНИ
  • МОБИЛЬНЫЕ ИЗМЕРИТЕЛЬНЫЕ МАШИНЫ FARO
  • СЕНСОРНЫЕ СИСТЕМЫ КОНТРОЛЯ ОКОН
  • СИСТЕМА HYCAP НОВОГО ПОКОЛЕНИЯ
  • Кондиционирование пресс-форм
  • КОМПОЗИЦИОННЫЙ МАТЕРИАЛ «ПОЛИЭТИЛЕНПЛАСТИК»
  • HAITIAN INTERNATIONAL: электрические серии Zhafir VENUS и Zhafir MERCURY
  • НКНХ ВЫБРАЛ ТЕХНОЛОГИЮ BASELL
  • ТОНКОПЛЁНОЧНЫЕ ПОКРЫТИЯ BENEQ
  • СМЕСИТЕЛИ DEGA ДЛЯ ПОЛИМЕРНОГО СЫРЬЯ
  • НОВАЯ ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ШИН
  • ЧИПЫ из УГЛЕРОДНЫХ НАНОТРУБКОК
  • ТЕХНОЛОГИЯ INEOS на НКНХ
  • ОПОРЫ ЛЭП из СТЕКЛОПЛАСТИКОВ
  • ПЭНД для IBC-контейнеров
  • ВАКУУМНЫЕ ЗАГРУЗЧИКИ СЕРИИ ASPIROPLAST AS
  • ДЖИНСЫ LEVI'S ИЗ ПЕРЕРАБОТАННЫХ БУТЫЛОК
  • ЭЛЕКТРИЧЕСКИЕ ТПА СЕРИИ ECOPOWER
  • СУШИЛКИ ДЛЯ ПОЛИМЕРОВ DEGA
  • АРАМИДНОЕ НАНОВОЛОКНО
  • ТЕХНОЛОГИЯ (S-FIT) - впрыскивание мягкого пенопласта
  • ДЕПОЛИМЕРИЗАЦИЯ ПОЛИСТИРОЛА
  • ТЕРМОПЛАСТАВТОМАТЫ CYBERTECH серии SERVO
  • СМЕСИ ДЛЯ ОЧИСТКИ ТПА И ЭКСТРУДЕРОВ
  • Все статьи
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved